经典案例
  • 有限元分析在机械产品设计的应用
  • 汽车转向机构有限元分析与优化
  • 风力发电机主轴结构强度分析
  • 发动机连杆的强度分析与结构优化
  • 车辆传动轴的强度分析与方案改进
  • 摩托车车架的刚度及强度分析
  • 注塑模具机构强度分析及结构优化
  • 变速箱轴键强度校核及结构改进
  • 挖掘机铲斗有限元计算和强度分析

弹性体阻尼器的磁路优化及有限元分析

发布于:2023-02-16 18:58
有限元分析

      磁流变弹性体作为一种新型的智能材料,具有刚度可控,性能稳定、响应速度快、可逆性好、无沉降以及无需考虑密封等特性。国内外相关研究表明,磁流变弹性体MRE非常适用于作为阻尼器中的吸振元件对振动进行控制,因此,磁流变弹性体阻尼器的有限元分析研究和应用受到了越来越广泛地关注。
      一直以来,国内外的研究人员设计的MRE阻尼器主要是基于剪切工作模式。然而LERNER等人通过对基于不同工作模式的磁流变弹性体进行研究后认为,就磁流变弹性体本身而言,它在挤压工作模式下所发生的磁致效应比剪切工作模式更充分。因此,基于挤压工作模式的MRE阻尼器具有更好的减振和移频效果,近年来受到研究人员的重视。
      考虑具体的应用环境及磁流变弹性体的性能,理想的MRE阻尼器其磁路应满足四方面要求:
    (1)MRE阻尼器内部磁路必须闭合,且穿过磁流变弹性体的有效磁力线较多,漏磁少。
    (2)当MRE阻尼器的线圈中通入控制电流时,磁流变弹性体部分应能够产生比较均匀的磁场,并且磁感应强度能够随着控制电流的增大而增大,以确保磁流变效应达到一个可观的调控范围,从而使阻尼器能产生需要的移频效果。
    (3)磁路中磁饱和顺序合理,磁流变弹性体处磁动势最大,且优先达到磁饱和,以充分发挥磁流变弹性体的磁致效应。
    (4)磁路结构紧凑,使阻尼器的外形结构和尺寸大小能够满足在实际使用中的安装要求。为优化磁流变弹性体(MRE)阻尼器的磁路性能,笔者选取线圈、弹性体、导磁体等关键尺寸作为优化参数,应用ANSYS参数化语言APDL,对基于挤压模式设计的MRE阻尼器模型进行优化设计,并采用ANSYS软件进行电磁场仿真分析和不同输入电流值对磁感应强度的影响分析。
      MRE阻尼器结构如图所示。
      由图可知,该MRE阻尼器的磁路主要由上导磁体、下导磁体、铁芯、线圈、磁流变弹性体、间隙和套筒组成。
      当线圈中通入最大允许电流I=2A时,阻尼器中铁芯部分首先达到磁饱和,根据电磁场的饱和理论可知,当磁路中的某一部分达到磁饱和以后,即整个磁路出现了瓶颈,其他部分便不会再出现磁饱和的情况,若磁流变弹性体不能最先达到磁饱和,则其磁致效应不能达到最大,则阻尼器不能发挥最大的减振性能。
      应用ANSYS参数化语言APDL编程,对MRE阻尼器的磁路进行优化,使铁芯和弹性体同时达到磁饱和或弹性体优先达到磁饱和,以优化该MRE阻尼器的性能。
      为方便参数化建模,建立MRE阻尼器的磁路结构。由于该MRE阻尼器的结构对称,其磁路简化后的结构如图所示。


                                                                                专业从事机械产品设计│有限元分析│CAE分析│结构优化│技术服务与解决方案
                                                                                                                                                      杭州那泰科技有限公司
                                                                              本文出自杭州那泰科技有限公司www.nataid.com,转载请注明出处和相关链接!

tag标签:
------分隔线----------------------------
------分隔线----------------------------